
 1

Enhancing Parallelism of Data-Intensive Bioinformatics Applications

Zheng Xie, Liangxiu Han

School of Computing, Mathematics and Digital

Technology

Manchester Metropolitan University

Manchester M1 5GD, UK

Z.Xie@mmu.ac.uk, L.Han@mmu.ac.uk

Richard Baldock

MRC Human Genetics Unit MRC IGMM,

University of Edinburgh Western General Hospital

 Edinburgh EH4 2XU, UK

richard.baldock@igmm.ed.ac.uk

Abstract— Bioinformatics data-resources collected from

heterogeneous and distributed sources can contain hundreds of

Terra-Bytes and the efficient exploration on these large

amounts of data is a critical task to enable scientists to gain

new biological insight. In this work, an MPI-based parallel

architecture has been designed for enhancing performance of

biomedical data intensive applications. The experiment results

show the system has achieved super-linear speedup and high

scalability.

Keywords- gene pattern recognition, data intensive

application, Message Passing Interface, collective/point-to-point

communicators, task/data parallelisms, fine-grain parallelism,

super-linear speedup, super-ideal scalability.

I. INTRODUCTION

With the exploitation of advanced high-throughput

instrumentation, the quantity and variety of bioinformatics

data have become overwhelming. Such data, collected from

heterogeneous and distributed sources, typically consists of

tens or hundreds of Terra Bytes (TB) comprising ten to fifty

thousand individual assays with supplementary metadata

and spatial-mapping information. This is the case with the

mouse embryo gene-expression databases EMAGE [13],

EurExpress [14] and the Allen Brain Atlas [15]. To enable

scientists to gain new biological insights, massively parallel

processing on these data is required. Parallel and distributed

computing, along with parallel programming models (e.g.,

MPI [1]), provides solutions by splitting massive data-

intensive tasks into smaller fragments and carrying out

much smaller computations concurrently.
This work explores how parallel processing could

accelerate data intensive biomedical applications. Message

Passing Interface (MPI) has been chosen to implement our

parallel structure. MPI is a standardized and portable

message-passing application programmer interface [4],

which is designed to function on a wide variety of parallel

computers. Its library provides communication functionality

among a set of processes. A rich range of functions in the

library enables us to implement complicated communication

which we need for enhancing the effectiveness of parallel

computing as computational resources increase.

Our contribution of this work lies in 1) Design and

implementation of enhanced parallel algorithms for a

bioinformatics data intensive application based on MPI. 2)

Quantitative analyses of super-linear speedup and high

scalability obtained from the parallel system. 3)

Consideration of maximizing the benefits of super-linear

speedup and high scalability by maximizing the benefits of

caching.

The rest of the paper is organized as follows: section II

describes the background and parallel solution for the

biomedical use case; Section III presents the experimental

evaluation. In Section IV, we conclude our work.

II. PARALLEL PROCESSING FOR DATA INTENSIVE

BIOMEDICAL APPLICATIONS

A. Background of the bioinformatics application

In this research, we aim to accelerate a task from the

biomedical science. This particular task concerns

ontological annotation of gene expression in the mouse

Embryo. Ontological annotation of gene expression has

been widely used to identify gene interactions and networks

that are associated with developmental and physiological

functions in the embryo. It entails labelling embryo images

produced from RNA in situ Hybridization (ISH) with terms

from the anatomy ontology for mouse development. If an

image is tagged with a term, it means the corresponding

anatomical component shows expression of that gene. The

input is a set of image files and corresponding metadata.

The output will be an identification of the anatomical

components that exhibit gene expression patterns in each

image. This is a typical pattern recognition task. As shown

in Figure1 (a), we first need to identify the features of

`humerus' in the embryo image and then annotate the image

using ontology terms listed on the left ontology panel. To

automatically annotate images, three stages are required: at

the training stage, the classification model has to be built,

based on training image datasets with annotations; at the

testing stage, the performance of the classification

 2

 (a) (b)

Figure 1. Automatic ontological gene annotation [3].

model has to be tested and evaluated; then at the

deployment stage, the model has to be deployed to perform

the classification of all non-annotated images. We mainly

focus on the training stage in this case. The processes in the

training stage include integration of images and annotations,

image processing, feature generation, feature selection and

extraction, and classifier design, as shown in Figure1 (b).
Currently gene expression annotation is mainly done

manually by domain experts. This is both time-consuming

and costly, especially with the rapidly growing volume of

image data of gene expression patterns on tissue sections

produced by advanced high-throughput instruments (e.g.

ISH). For example, the EuExpress-II project [2] delivered

partially annotated and curated datasets of over 20

Terabytes including images for the developing mouse

embryo and the ontological terms for anatomic components

of the mouse embryo, which provides a powerful resource

for discovery of genetic control and functional pathways of

processes controlling embryo organisation. To alleviate the

issues with the manual annotation, we have developed data

mining algorithms for automatically identifying an

anatomical component in the embryo image and annotating

the image using the provided ontological terms [3],

programmed these in sequential code and executed the task

on a single commodity machine. Note that this task is a

specific instance of a generic image-processing analysis

pipeline that could be applied to many datasets. To process

the everincreasing growth in the volume of stored data, it is

necessary to design parallel solutions for speedup the data

intensive applications.

B. Overview of parallel approach

 It is well known that the speedup of an application to

solve large computational problems is mainly gained by the

parallelisation at either hardware or software levels or both

(e.g., signal, circuit, component and system levels).

 In general, three considerations when parallelising an

application at software level include:

• How to distribute workloads or decompose an algorithm

into parts as tasks?

• How to map the tasks onto various computing nodes and

execute the subtasks in parallel?

• How to coordinate and communicate subtasks on those

computing nodes.

There are mainly two common methods for dealing

with the first two questions: data parallelism and task

parallelism. Data parallelism represents workloads are

distributed into different computing nodes and the same task

can be executed on different subsets of the data

simultaneously. Task parallelism means the tasks are

independent and can be executed purely in parallel. There is

another special kind of the task parallelism is called

‘pipelining’. A task is processed at different stages of a

pipeline, which is especially suitable for the case when the

same task is used repeatedly. The extent of parallelisation is

determined by dependencies of each individual part of the

algorithms and tasks.

As for the coordination and communication among

tasks or processes on various nodes or computing cores, it

depends on different memory architectures (shared memory

or distributed memory). A number of communication

models have been developed [7][8]. Among them, the

Message Passing Interface (MPI) has been developed for

HPC parallel applications with distributed memory

architectures and has become the de-facto standard. There is

a set of implementations of MPI, for example, OpenMPI

[9], MPICH [10], GridMPI [11] and LAM/MPI [12]. Two

types of MPI communication functionality are point-to-

point and collective communication, and there are a number

of functions involved in them. Point-to-point functions deal

 3

with communication between two specific processes, in

which a message needs to be sent from a specified process

to another specified process. They are suitable for patterned

or irregular communication. Collective functions manage

communication among all processes in a process group at

same time. The process group could either be the entire

process pool or a program-defined process subset.

Collective communication is more efficient than point-to-

point communication, and ought to be used in the parallel

architecture wherever it is suitable.

C. Parallel processing using MPI for the bioinformatics

application

This section presents how we have designed and developed

a parallel approach based on MPI for efficiently processing

large-scale data.

In terms of the nature of algorithms used in the

biomedical application use case, we have mainly employed

data and task parallelisms. The communication model used

here is MPI, which support both point-to-point and

collective communications.

For data parallelism, we need to distribute workloads into

different computing cores and execute same computation on

different subsets of the data simultaneously. This

functionality could be implemented by using one of MPI

collective functions, ‘MPI_Scatter’, which takes the

workload as an array and split it into a number of segments.

The number of segments is program defined number of

parallel processes, with which MPI programs always work.

Then, at runtime, all the processes are assigned to

computing cores in the order of process rank through the

agent that starts the MPI program. When it needs to swap

regions of data among specific processors between

calculation steps, point-to-point communication functions

are used, such as ‘MPI_Send/Recv’. For task parallelism,

especially for ‘pipelining’, point-to-point communication

functions are used to pass new task data from a set of cores

to another set of cores whenever the prior tasks are

completed.

Our workflow for the application is divided into three

parts according to the characteristics of the task and data

processing,
1) Image Processing and Feature Generation,
2) Feature Selection and Extraction,
3) Classification.

The overview of parallel architecture is illustrated in Figure

2.
In the first part of the workflow, the image processing of

each image works independently on its own dataset, and data
parallelism is the suitable form for parallel processing. The
efficient collective communication of MPI is able to

implement the data parallel and enhance the proceeding
speed with minimum communication time. It is implemented
with MPI collective communicator ‘MPI_Scatter’ and
‘MPI_Gather’, and the minimum processing unit is a single
image object. ‘MPI_Scatter’, as shown in Figure3, takes an
array of image objects and distributes the objects in the order
of process rank. ‘MPI_Gather’ is the reverse function of
‘scatter’. After image processing, all the feature data vectors
representing the processed images are put together in the
order of the process rank to produce a new data array, which
is the input for the second part of the workflow.

In the second part of the workflow, fisher-ratio algorithm
is used for feature selection and extraction [3]. Taking into
account of large computing resources and regular calculation
of mean and standard deviation, fine-grain parallelism is
implemented. The implementation is similar to the part 3,
and the detail is discussed in the next paragraph. In the
context of this research, ‘fine-grain’ means that a task is split
into very small fragment to make efficient use of the
computing resources, though the increasing time of
communication among processors is a tradeoff.

In part 3 of the workflow, a Linear Discriminant

Analysis (LDA) algorithm [16] is used to implement a

classifier, considering the optimization on classification [3].

In the LDA implementation, both regular and irregular

computation are involved, such as matrix multiplication,

finding global and sub-data sets mean and covariance

matrix, and the calculation of a discriminant function.

Taking into account the complexity of the computation,

fine-grain and task parallelisms are implemented by jointly

using point-to-point and collective communicators. Various

kinds of computations are defined as individual tasks. Sub-

data sets for different computations are distributed in the

way of ‘MPI_Scatter’. Data transfer among tasks is

managed by MPI’s point-to-point communicators

‘MPI_Send/Recv’. This is a task parallel implementation.

Within each individual computation, fine-grain parallelism

is designed, which split each vector of an array into sub-

vector by using ‘MPI_Scatter’. Figure 4 illustrates the fine-

grained array multiplication calculation with increasing

number of processes. The parallel implementation is

sensitive to the number of process. In the case of a small

number of process or computing cores which is less than the

number of vectors in an array, it is a coarse-grained parallel

implementation. It is a fine parallel implementation when

the number of computing cores is greater than this number

of vectors. The advantage of this structure is that it makes

efficient use of the computing resources; so that no

computing cores have significantly different workloads

from others as the workflow progresses.

 4

Big Image Data Set

MPI Scatter Sub-Data Set from Rank 0 Processor

Feature Data Set Feature Data Set Feature Data Set

Test Data Set

Rank 0 Image

Processing

…

…Rank 1 Image

Processing

Rank N Image

Processing

MPI Gather to Form Complete Feature Data Set at Rank 0 Processor

MPI Scatter Sub Feature Data Set and Index at Rank 0 processor

Rank 0 Fine Grain

Feature Selection
…Rank 1 Fine Grain

Feature Selection
Rank N Fine Grain

Feature Selection

MPI Gather to do Feature Extraction at Rank 0 Processor

Fine-Grain Group

Neg. Mean
… Fine-Grain Group

Pos. Mean

 Fine Grain Global

Mean

MPI Scatter Sub Feature Data Set and Index at Rank 0 Processor

 Fine Grain

Covariance

 Fine Grain Discrimination

Function

 Classification

Feature

Selection &

Extraction

Image Processing

& Feature

Generation

MPI Send/Recv MPI Send/Recv MPI Send/Recv

MPI Gather to do Classification Predication at Rank 0 Processor

Figure 2. Parallel architecture for the workflow.

Figure 3. ‘MPI_Scatter’ operation with n processors and a data series.

…

…

…

0

n 0 1 2 3

 5

 (a) process number less than the number of rows. (b) process number greater than number of rows.

Figure 4. Array multiplication under process number dependent fine-grain algorithm.

Fine-grain parallel algorithm corresponding to the

number of process number is as below, called process
number dependent fine-grain algorithm.
--
Algorithm. Process number dependent fine-grain algorithm
--
Input Process number nP

Input Number of array columns ncolumn

Input Number of array rows nrow
If nrow >= nP

MPI_Scatter buffer length = (nrow / nP)* ncolumn
Calculation
MPI_Gather buffer length = nrow / nP

End
While nrow <nP

MPI_Scatter buffer length = ncolumn / nP
Calculation
MPI_Gather 1 buffer length = ncolumn / nP
MPI_Gather 2 buffer length = ncolumn

End
--

III. EXPERIMENTAL EVALUATION AND DISCUSSION

A. Experimental evaluation

1) Experiment setup
A Linux cluster called Feyman, located at the

Manchester Metropolitan University, is used for
performance evaluation. It has a front end/storage node
and 8 compute nodes, which are each 2× Intel E5430
quad-core processor running at 2.6GHz with 8GB of
RAM (1 GB per core). The front end and compute nodes
are all linked using gigabit Ethernet. The program runs in
standalone form on the cluster, and it is compiled with
FastMPJ [17] and packed into executable .jar file.

We have performed experiments by varying numbers
of processors and size of dataset:

• Number of processors: 4 cores, 8 cores, 16 cores,
32 cores, 64 cores.

• Data size (number of images): 1X, 2X, 4X, 8X,16X,
32X, 64X, where X=128 images.

2) Performance evaluation metrics
We have measured performance of the parallel solution

using two metrics: speedup and scalibility.

a) Speedup

Amdahl’s law [18] describes an ideal linear speedup for
a parallel system with the following equation:

P

α
α

−
+

1

1
 (1)

In this expression, α is the fraction of a calculation that is

sequential, (1- α) is the fraction that can be parallelised, and

P is the number of processors. The maximum linear speedup

that can be achieved is P. In our experiments, the baseline

number of processors was 4; therefore the maximum

speedup was 2 for 8 processors, 4 for 16 processors and so

on. However, as can be seen in Figure 5, the speedup

obtained is often greater than the maximum linear speedup.

This is super-linear speedup, which can be due to the cache

effect resulting from the different memory hierarchies of

modern computers. In parallel computing, not only do the

numbers of processors change, but so does the sizes of

accumulated caches from different processors. With the

larger accumulated cache size, more or even all of the

working set can fit into caches and the memory access time

can reduce dramatically. This causes the extra speedup [1],

which we strive to achieve in parallel computing. To

maximize the benefits of super-linear speedup in our

application, the images may be clustered according readily

discernable aspects of their similarity; for example their

sizes or known features. Similar images are sent to the

same processor to maximize the benefits of caching.

 6

X=128 images

1.00

10.00

100.00

4 8 16 32 64

Number of cores

S
p
e
e
d

u
p
 r

e
la

ti
v
e
 t

o
 t
h

e
 b

a
s
e
li
n

e 1X

2X

4X

8X

16X

32X

64X

Ideal

Figure 5. Speedup performance analysis

b) Scalability

The scalability concerns the relationship between the

computation time and the increasing number of processors

and dataset size. This can be expressed in terms of the

relationship between the factor, ∆T, by which the

computation time increases when the number of parallel

processors increases by a factor NP and the dataset size

increases by a factor ND. Factors less than 1 represent a

decrease. ∆T may be expressed as

P

D
PD

N

N
NNKT),(=∆ (2)

The function K may be dependent on many factors

including ND and NP. Over ranges of ND and NP for which

the function K remains constant, the speedup is said to be

linear. Ideal linear speedup occurs where K=1 which means

that if the factors NP and ND are equal, ∆T =1. This means

that the computation time does not change when the number

of parallel processors and the dataset size increase by the

same ratio. The speedup becomes ‘super-linear’ (or ‘super

ideal’) if K becomes less than 1 over any range of factors ND

and NP, which means that a reduction in computation time

(∆T <1) will occur when the number of processors and the

dataset size increase by the same ratio.

We can thus derive the following three equations based

on Eq.(2). For fixed number of computing cores with

increasing dataset size, the scalability can be represented in

Eq.(3). For both the size of dataset and number of

computing cores increase, the scalability can be represented

in Eq.(4)

),(
1),(

PD

PD

PD

P

D

D

NNK
NN

NNK

N

N

N

T

+

∂

∂

=

∂

∆∂ (3)

T
N

NNK
N

N

T

P

PD
D

P

∆−
∂

∂
=

∂

∆∂),((4)

 In Figure 6 (a), it may be seen that the increasing factor

of computation time is almost equal to the increasing factor
of dataset size for all numbers of cores, and are close to the
ideal linear relationship. Figure 6 (b) shows that the
decreasing factor of computation time is almost equal to the
increasing factor of number of computing cores. All these
results demonstrate good scalability of the parallel
processing.

1

10

100

1x 2x 4x 8x 16x 32x 64x

Relative Data Size

R
e

la
ti

v
e

 T
im

e
 t

o
 P

ro
c

e
s

s

4 cores

8 cores

16 cores

32 cores

64 cores

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1x 2x 4x 8x 16x

Relative number of cores (baseline=4)

R
e

la
ti

v
e

 p
ro

c
e

s
s

in
g

 t
im

e
 t

o
 b

a
s

e
li

n
e

76.8 M

153.6 M

307.2 M

614.4 M

1.2 G

2.4 G

4.8 G

(b)
Figure 6. Scalability analysis: (a) time increasing factor
vs dataset size increasing factor; (b) time decreasing
factor vs increasing factor of computing core number.

 7

Figure 7 shows the value of K(ND, NP) in Eq.(2) plotted
over the ranges of ND and NP used in the experiments. In the
figure, label ‘log2NP’ and ‘log2ND’ represent increasing
factor of computing cores and dataset size respectively. For
example, that ‘log2NP’ is 3 means the core number increase
by a factor of 8. It may be seen in Figure 7 that the function
K becomes less than one over a significant range of values of
(ND, NP) meaning that the scalability becomes super-ideal.

1

2

3

4

5

1
2

3
4

5
6

7

0.7

0.8

0.9

1

1.1

1.2

1.3

log2(NP)

K factor

log2(ND)

K
(N

P
,N

D
)

Figure 7. Scalability K(ND, NP) for factors ND and NP .

The performance of this parallel structure has been tested

on a large size of dataset, 78.6 G. It shows super-linear
speedup of 2.66, 5.24, 9.87 when the number of processors
increased with factor of 2, 4, and 8 respectively.

IV. CONCLUSIONS

The process number dependent fine-grained algorithm

enhances the parallel calculation needed in Linear

Discriminant Analysis (LDA) classification. The advantage

of this parallel structure is that it makes efficient use of the

computing resources; so that no computing cores have

significantly different workloads from others as the

workflow progresses. The parallel architecture designed

with technically using MPI communicators has enhanced

the parallel processing performance in both aspects of

speedup and scalability, and super-linear speedup and super-

ideal scalability have occurred under this parallel structure.

The method of quantitative analysis of scalability may be

used for complicated high performance system. To

maximize the benefits of super-linear speedup applications,

the objects may be clustered according readily discernable

aspects of their similarity. Similar objects are sent to the

same processor to maximize the benefits of caching.

ACKNOWLEDGMENT

This research was sponsored by the Biotechnology and

Biological Science Research Council (BBSRC). The authors

acknowledge the financial support from BBSRC and the

collaboration among the people of the AGILE project.

REFERENCES

[1] J. Benzi, M. Damodaran, “Parallel Three Dimensional Direct

Simulation Monte Carlo for Simulating Micro Flows,”
Implementations and Experiences on Large Scale and Grid
Computing, Parallel Computational Fluid Dynamics, p. 95,
Springer2007, Retrieved 2013-03-21.

[2] Eurexpress website, http://www.eurexpress.org/ee/ , accessed May,
2013.

[3] L. Han, J. van Hemert, and R. Baldock, “Automatically identifying
and annotating mouse embryo gene expression patterns,”
Bioinformatics, vol. 27(8), pp. 1101–1107, 2011.

[4] A.Yukiya, Nakano, “Practical MPI Programming”, http:/ /www.

redbooks. ibm. com/ abstracts/ sg245380. html), ITSO, Jun 1999.

[5] EURExpress-II project, http://www.eurexpress.org/ee/,
Retrieved 10, May, 2010.

[6] L. Silva, and R. Buyya, “High Performance Cluster Computing:
Programming and Applications,” ch. Parallel Programming Models
and Paradigms, pp. 4–27. No. ISBN 0-13-013785-5. Prentice Hall,
PTR, NJ, USA, 1999

[7] P. S. Pacheco Parallel Programming with MPI. Morgan Kaufmann
 Publishers, Inc., 1997.

[8] PVM, 2009, http://www.csm.ornl.gov/pvm/, Retrieved 5 May, 2010.

[9] OpenMPI, 2009, http://www.open-mpi.org/, Retrieved 5 May, 2010.

[10] MPICH, http://www.mcs.anl.gov/research/projects/mpi/mpich1/,
Retrived 5 May, 2010.

[11] GridMPI, http://www.gridmpi.org/index.jsp, Retrieved 5 May, 2010.

[12] LAMMPI, http://www.lam-mpi.org/, Retrieved 5 May, 2010.

[13] Jeffrey H. Christiansen, Yiya Yang, Shanmugasundaram
Venkataraman, Lorna Richardson, Peter Stevenson, Nicholas Burton,
Richard A. Baldock and Duncan R. Davidson. EMAGE: a spatial
database of gene expression patterns during mouse embryo
development. Nucl. Acids Res. 34 (2006): D637

[14] Diez-Roux et al, “A High-Resolution Anatomical Atlas of the
Transcriptome in the Mouse Embryo,” PLoS Biol 9(1) 2011:
e1000582.

[15] E. S. Lein, M. J. Hawrylycz, et al, “Genome-wide atlas of gene
expression in the adult mouse brain.,” Nature, vol. 445, no. 7124, pp.
168–176, Jan. 2007.

[16] G. Perriere, J. Thioulouse, "Use of Correspondence Discriminant
Analysis to predict the subcellular location of bacterial proteins",
Computer Methods and Programs in Biomedicine, vol.70, pp.99-105,
2003.

[17] “High Performance Java Message Passing Library”,
http://www.fastmpj.com/, accessed January 2013.

[18] Amdahl, Gene, “Validity of the Single Processor Approach to
Achieving Large-Scale Computing Capabilities,” AFIPS Conference
Proceedings (30), pp. 483–485, 1967.

