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Abstract— Bioinformatics data-resources collected from 

heterogeneous and distributed sources can contain hundreds of 

Terra-Bytes and the efficient exploration on these large 

amounts of data is a critical task to enable scientists to gain 

new biological insight. In this work, an MPI-based parallel 

architecture has been designed for enhancing performance of 

biomedical data intensive applications. The experiment results 

show the system has achieved super-linear speedup and high 

scalability. 
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I.  INTRODUCTION  

With the exploitation of advanced high-throughput 

instrumentation, the quantity and variety of bioinformatics 

data have become overwhelming. Such data, collected from 

heterogeneous and distributed sources, typically consists of 

tens or hundreds of Terra Bytes (TB) comprising ten to fifty 

thousand individual assays with supplementary metadata 

and spatial-mapping information.  This is the case with the 

mouse embryo gene-expression databases EMAGE [13], 

EurExpress [14] and the Allen Brain Atlas [15]. To enable 

scientists to gain new biological insights, massively parallel 

processing on these data is required.  Parallel and distributed 

computing, along with parallel programming models (e.g., 

MPI [1]), provides solutions by splitting massive data-

intensive tasks into smaller fragments and carrying out 

much smaller computations concurrently.   
This work explores how parallel processing could 

accelerate data intensive biomedical applications. Message 

Passing Interface (MPI) has been chosen to implement our 

parallel structure. MPI is a standardized and portable 

message-passing application programmer interface [4], 

which is designed to function on a wide variety of parallel 

computers. Its library provides communication functionality 

among a set of processes. A rich range of functions in the 

library enables us to implement complicated communication 

which we need for enhancing the effectiveness of parallel 

computing as computational resources increase.  

Our contribution of this work lies in 1) Design and 

implementation of enhanced parallel algorithms for a 

bioinformatics data intensive application based on MPI.  2) 

Quantitative analyses of super-linear speedup and high 

scalability obtained from the parallel system. 3) 

Consideration of maximizing the benefits of super-linear 

speedup and high scalability by maximizing the benefits of 

caching. 

The rest of the paper is organized as follows: section II 

describes the background and parallel solution for the 

biomedical use case; Section III presents the experimental 

evaluation. In Section IV, we conclude our work.  

 

II. PARALLEL PROCESSING FOR DATA INTENSIVE 

BIOMEDICAL APPLICATIONS  

A. Background of the bioinformatics application 

In this research, we aim to accelerate a task from the 

biomedical science. This particular task concerns 

ontological annotation of gene expression in the mouse 

Embryo. Ontological annotation of gene expression has 

been widely used to identify gene interactions and networks 

that are associated with developmental and physiological 

functions in the embryo. It entails labelling embryo images 

produced from RNA in situ Hybridization (ISH) with terms 

from the anatomy ontology for mouse development. If an 

image is tagged with a term, it means the corresponding 

anatomical component shows expression of that gene. The 

input is a set of image files and corresponding metadata. 

The output will be an identification of the anatomical 

components that exhibit gene expression patterns in each 

image. This is a typical pattern recognition task. As shown 

in Figure1 (a), we first need to identify the features of 

`humerus' in the embryo image and then annotate the image 

using ontology terms listed on the left ontology panel.  To 

automatically annotate images, three stages are required: at 

the training stage, the classification model has to be built, 

based on training image datasets with annotations; at the 

testing stage, the performance of the classification
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Figure 1. Automatic ontological gene annotation [3]. 

 

model has to be tested and evaluated; then at the 

deployment stage, the model has to be deployed to perform 

the classification of all non-annotated images. We mainly 

focus on the training stage in this case. The processes in the 

training stage include integration of images and annotations, 

image processing, feature generation, feature selection and 

extraction, and classifier design, as shown in Figure1 (b). 
Currently gene expression annotation is mainly done 

manually by domain experts. This is both time-consuming 

and costly, especially with the rapidly growing volume of 

image data of gene expression patterns on tissue sections 

produced by advanced high-throughput instruments (e.g. 

ISH). For example, the EuExpress-II project [2] delivered 

partially annotated and curated datasets of over 20 

Terabytes including images for the developing mouse 

embryo and the ontological terms for anatomic components 

of the mouse embryo, which provides a powerful resource 

for discovery of genetic control and functional pathways of 

processes controlling embryo organisation. To alleviate the 

issues with the manual annotation, we have developed data 

mining algorithms for automatically identifying an 

anatomical component in the embryo image and annotating 

the image using the provided ontological terms [3], 

programmed these in sequential code and executed the task 

on a single commodity machine. Note that this task is a 

specific instance of a generic image-processing analysis 

pipeline that could be applied to many datasets. To process 

the everincreasing growth in the volume of stored data, it is 

necessary to design parallel solutions for speedup the data 

intensive applications. 

 

B. Overview of parallel approach 

 It is well known that the speedup of an application to 

solve large computational problems is mainly gained by the 

parallelisation at either hardware or software levels or both 

(e.g., signal, circuit, component and system levels). 

 In general, three considerations when parallelising an 

application at software level include: 

• How to distribute workloads or decompose an algorithm 

into parts as tasks? 

• How to map the tasks onto various computing nodes and 

execute the subtasks in parallel? 

• How to coordinate and communicate subtasks on those 

computing nodes. 

There are mainly two common methods for dealing 

with the first two questions: data parallelism and task 

parallelism. Data parallelism represents workloads are 

distributed into different computing nodes and the same task 

can be executed on different subsets of the data 

simultaneously. Task parallelism means the tasks are 

independent and can be executed purely in parallel. There is 

another special kind of the task parallelism is called 

‘pipelining’. A task is processed at different stages of a 

pipeline, which is especially suitable for the case when the 

same task is used repeatedly. The extent of parallelisation is 

determined by dependencies of each individual part of the 

algorithms and tasks. 

As for the coordination and communication among 

tasks or processes on various nodes or computing cores, it 

depends on different memory architectures (shared memory 

or distributed memory). A number of communication 

models have been developed [7][8]. Among them, the 

Message Passing Interface (MPI) has been developed for 

HPC parallel applications with distributed memory 

architectures and has become the de-facto standard. There is 

a set of implementations of MPI, for example, OpenMPI 

[9], MPICH [10], GridMPI [11] and LAM/MPI [12].  Two 

types of MPI communication functionality are point-to-

point and collective communication, and there are a number 

of functions involved in them. Point-to-point functions deal 
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with communication between two specific processes, in 

which a message needs to be sent from a specified process 

to another specified process. They are suitable for patterned 

or irregular communication. Collective functions manage 

communication among all processes in a process group at 

same time. The process group could either be the entire 

process pool or a program-defined process subset. 

Collective communication is more efficient than point-to-

point communication, and ought to be used in the parallel 

architecture wherever it is suitable.  

C. Parallel processing using MPI for the bioinformatics 

application 

This section presents how we have designed and developed 

a parallel approach based on MPI for efficiently processing 

large-scale data.  

In terms of the nature of algorithms used in the 

biomedical application use case, we have mainly employed 

data and task parallelisms. The communication model used 

here is MPI, which support both point-to-point and 

collective communications.    

For data parallelism, we need to distribute workloads into 

different computing cores and execute same computation on 

different subsets of the data simultaneously. This 

functionality could be implemented by using one of MPI 

collective functions, ‘MPI_Scatter’, which takes the 

workload as an array and split it into a number of segments. 

The number of segments is program defined number of 

parallel processes, with which MPI programs always work. 

Then, at runtime, all the processes are assigned to 

computing cores in the order of process rank through the 

agent that starts the MPI program. When it needs to swap 

regions of data among specific processors between 

calculation steps, point-to-point communication functions 

are used, such as ‘MPI_Send/Recv’. For task parallelism, 

especially for ‘pipelining’, point-to-point communication 

functions are used to pass new task data from a set of cores 

to another set of cores whenever the prior tasks are 

completed.  

Our workflow for the application is divided into three 

parts according to the characteristics of the task and data 

processing, 
1) Image Processing and Feature Generation,  
2) Feature Selection and Extraction, 
3) Classification. 

The overview of parallel architecture is illustrated in Figure 

2. 
In the first part of the workflow, the image processing of 

each image works independently on its own dataset, and data 
parallelism is the suitable form for parallel processing.  The 
efficient collective communication of MPI is able to 

implement the data parallel and enhance the proceeding 
speed with minimum communication time. It is implemented 
with MPI collective communicator ‘MPI_Scatter’ and 
‘MPI_Gather’, and the minimum processing unit is a single 
image object.  ‘MPI_Scatter’, as shown in Figure3, takes an 
array of image objects and distributes the objects in the order 
of process rank.  ‘MPI_Gather’ is the reverse function of 
‘scatter’.  After image processing, all the feature data vectors 
representing the processed images are put together in the 
order of the process rank to produce a new data array, which 
is the input for the second part of the workflow.   

In the second part of the workflow, fisher-ratio algorithm 
is used for feature selection and extraction [3]. Taking into 
account of large computing resources and regular calculation 
of mean and standard deviation, fine-grain parallelism is 
implemented. The implementation is similar to the part 3, 
and the detail is discussed in the next paragraph. In the 
context of this research, ‘fine-grain’ means that a task is split 
into very small fragment to make efficient use of the 
computing resources, though the increasing time of 
communication among processors is a tradeoff.  

In part 3 of the workflow, a Linear Discriminant 

Analysis (LDA) algorithm [16] is used to implement a 

classifier, considering the optimization on classification [3]. 

In the LDA implementation, both regular and irregular 

computation are involved, such as matrix multiplication, 

finding global and sub-data sets mean and covariance 

matrix, and the calculation of a discriminant function. 

Taking into account the complexity of the computation, 

fine-grain and task parallelisms are implemented by jointly 

using point-to-point and collective communicators. Various 

kinds of computations are defined as individual tasks. Sub-

data sets for different computations are distributed in the 

way of ‘MPI_Scatter’. Data transfer among tasks is 

managed by MPI’s point-to-point communicators 

‘MPI_Send/Recv’. This is a task parallel implementation. 

Within each individual computation, fine-grain parallelism 

is designed, which split each vector of an array into sub-

vector by using ‘MPI_Scatter’. Figure 4 illustrates the fine-

grained array multiplication calculation with increasing 

number of processes. The parallel implementation is 

sensitive to the number of process. In the case of a small 

number of process or computing cores which is less than the 

number of vectors in an array, it is a coarse-grained parallel 

implementation.  It is a fine parallel implementation when 

the number of computing cores is greater than this number 

of vectors. The advantage of this structure is that it makes 

efficient use of the computing resources; so that no 

computing cores have significantly different workloads 

from others as the workflow progresses. 
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Figure 2. Parallel architecture for the workflow. 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 3. ‘MPI_Scatter’ operation with n processors and a data series. 
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          (a) process number less than the number of rows.              (b) process number greater than number of rows. 
 

Figure 4. Array multiplication under process number dependent fine-grain algorithm. 
 

 
Fine-grain parallel algorithm corresponding to the 

number of process number is as below, called process 
number dependent fine-grain algorithm. 
-------------------------------------------------------------------------- 
Algorithm. Process number dependent fine-grain algorithm 
-------------------------------------------------------------------------- 
Input Process number nP 

Input Number of array columns ncolumn 

Input Number of array rows nrow 
If nrow >= nP 

MPI_Scatter buffer length = (nrow / nP)* ncolumn 
Calculation 
MPI_Gather buffer length = nrow / nP 

End 
While nrow <nP 

MPI_Scatter buffer length = ncolumn / nP 
Calculation 
MPI_Gather 1 buffer length = ncolumn / nP 
MPI_Gather 2 buffer length = ncolumn  

End 
-------------------------------------------------------------------------- 

 

III. EXPERIMENTAL EVALUATION AND DISCUSSION  

A. Experimental evaluation 

1) Experiment setup 
A Linux cluster called Feyman, located at the 

Manchester Metropolitan University, is used for 
performance evaluation. It has a front end/storage node 
and 8 compute nodes, which are each 2× Intel E5430 
quad-core processor running at 2.6GHz with 8GB of 
RAM (1 GB per core).  The front end and compute nodes 
are all linked using gigabit Ethernet. The program runs in 
standalone form on the cluster, and it is compiled with 
FastMPJ [17] and packed into executable .jar file. 

We have performed experiments by varying numbers 
of processors and size of dataset:  

• Number of processors:  4 cores, 8 cores, 16 cores, 
32 cores, 64 cores.   

• Data size (number of images): 1X, 2X, 4X, 8X,16X, 
32X, 64X,  where X=128 images. 
 
 
 

2) Performance evaluation metrics  
We have measured performance of the parallel solution 

using two metrics: speedup and scalibility. 

a) Speedup  

Amdahl’s law [18] describes an ideal linear speedup for 
a parallel system with the following equation:  

P

α
α

−
+

1

1
                                   (1) 

In this expression, α is the fraction of a calculation that is 

sequential, (1- α ) is the fraction that can be parallelised, and 

P is the number of processors. The maximum linear speedup 

that can be achieved is P. In our experiments, the baseline 

number of processors was 4; therefore the maximum 

speedup was 2 for 8 processors, 4 for 16 processors and so 

on. However, as can be seen in Figure 5, the speedup 

obtained is often greater than the maximum linear speedup. 

This is super-linear speedup, which can be due to the cache 

effect resulting from the different memory hierarchies of 

modern computers.   In parallel computing, not only do the 

numbers of processors change, but so does the sizes of 

accumulated caches from different processors. With the 

larger accumulated cache size, more or even all of the 

working set can fit into caches and the memory access time 

can reduce dramatically. This causes the extra speedup [1], 

which we strive to achieve in parallel computing.  To 

maximize the benefits of super-linear speedup in our 

application, the images may be clustered according readily 

discernable aspects of their similarity; for example their 

sizes or known features.  Similar images are sent to the 

same processor to maximize the benefits of caching. 
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Figure 5. Speedup performance analysis 

 

b) Scalability 

The scalability concerns the relationship between the 

computation time and the increasing number of processors 

and dataset size. This can be expressed in terms of the 

relationship between the factor, ∆T, by which the 

computation time increases when the number of parallel 

processors increases by a factor NP and the dataset size 

increases by a factor ND. Factors less than 1 represent a 

decrease.   ∆T may be expressed as 
 

P

D
PD

N

N
NNKT ),(=∆                            (2) 

 
The function K may be dependent on many factors 

including ND and NP.   Over ranges of ND and NP for which 

the function K remains constant, the speedup is said to be 

linear.  Ideal linear speedup occurs where K=1 which means 

that if the factors NP and ND are equal, ∆T =1.  This means 

that the computation time does not change when the number 

of parallel processors and the dataset size increase by the 

same ratio.  The speedup becomes ‘super-linear’ (or ‘super 

ideal’) if K becomes less than 1 over any range of factors ND 

and NP, which means that a reduction in computation time 

(∆T <1) will occur when the number of processors and the 

dataset size increase by the same ratio.  

We can thus derive the following three equations based 

on Eq.(2). For fixed number of computing cores with 

increasing dataset size, the scalability can be represented in 

Eq.(3). For both the size of dataset and number of 

computing cores increase, the scalability can be represented 

in Eq.(4)  
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 In Figure 6 (a), it may be seen that the increasing factor 

of computation time is almost equal to the increasing factor 
of dataset size for all numbers of cores, and are close to the 
ideal linear relationship. Figure 6 (b) shows that the 
decreasing factor of computation time is almost equal to the 
increasing factor of number of computing cores.  All these 
results demonstrate good scalability of the parallel 
processing. 
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Figure 6. Scalability analysis: (a) time increasing factor 
vs dataset size increasing factor; (b) time decreasing 
factor vs increasing factor of computing core number.  
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Figure 7 shows the value of K(ND, NP) in Eq.(2) plotted 
over the ranges of  ND and NP used in the experiments. In the 
figure, label ‘log2NP’ and ‘log2ND’ represent increasing 
factor of computing cores and dataset size respectively. For 
example, that ‘log2NP’ is 3 means the core number increase 
by a factor of 8.   It may be seen in Figure 7 that the function 
K becomes less than one over a significant range of values of 
(ND, NP) meaning that the scalability becomes super-ideal. 
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Figure 7. Scalability  K(ND, NP) for factors ND and NP . 

 
The performance of this parallel structure has been tested 

on a large size of dataset, 78.6 G. It shows super-linear 
speedup of 2.66, 5.24, 9.87 when the number of processors 
increased with factor of 2, 4, and 8 respectively. 

 

IV. CONCLUSIONS  

 

The process number dependent fine-grained algorithm 

enhances the parallel calculation needed in Linear 

Discriminant Analysis (LDA) classification.  The advantage 

of this parallel structure is that it makes efficient use of the 

computing resources; so that no computing cores have 

significantly different workloads from others as the 

workflow progresses. The parallel architecture designed 

with technically using MPI communicators has enhanced 

the parallel processing performance in both aspects of 

speedup and scalability, and super-linear speedup and super-

ideal scalability have occurred under this parallel structure. 

The method of quantitative analysis of scalability may be 

used for complicated high performance system. To 

maximize the benefits of super-linear speedup applications, 

the objects may be clustered according readily discernable 

aspects of their similarity.  Similar objects are sent to the 

same processor to maximize the benefits of caching. 
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